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ABSTRACT

Classical edge detectors cannot handle the problem of

noisy sonar track detection because they are too sensitive to

noise. This thesis uses Simulated Annealing for the solution

by formulating the sonar track detection problen Z an

optimization problem. The experimental results are much

better than those of classical edge detectors. Fairly good

results can be obtained on data with SNR down to -18 dB where

most classical edge detectors fail.
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I. INTRODUCTION

This thesis is an investigation of applying the Simulated

Annealing (SA).[Ref. 1] algorithm to the problem of sonar track

detection. The acoustic track recognition is difficult

because of the presence of large quantities of noise from all

sources.

Classical edge detectors are not robust enough to deal

with noisy tracks, and a high degree of false and fragmented

edges will be produced. Simulated Annealing may be used to

solve the problem by formulating the sonar track detection

problem as an optimization problem. Since Simulated Annealing

is very effective in finding the global optimal solution,

track detection using Simulated Annealing has very good

potential.

T. Hibbert has written a report of "Sonar Track Detection

Using Simulated Annealing" [Ref. 2]. In this report, multi-

track data is used. Tracks at low frequency are detected with

good results, while the tracks at high frequency are not

detected due to the noise. Further, the tracks produced in

this report are fragmented.

Essentially, the optimization method of Simulated

Annealing used in this thesis is concentrated on local track

fine tuning. The use of local track tuning methods studied

here restricts the application of this method to a small
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region of the lofargram. Therefore some future improvement is

needed. The test image data used here includes single track

data with various SNR values, multi-track data, and sweep

track data. The experimental results show that the Simulated

Annealing detection algorithm can be very sensitive to a

single track with very low SNR. Most classical edge detectors

do not work at all with these images. The Simulated Annealing

algorithm also works with the multi-track and sweep track

images which are shown in the later chapters.

A brief background of the theory of Simulated Annealing is

given in Chapter II. Detailed treatments of the experimental

procedure and results are presented in Chapters III and IV. In

Chapter III, three cases of single track detection problems

are described. In Chapter IV, the cases of multi-track and

sweep track detection problems are reported. Finally, in the

last chapter conclusions and some unresolved questions are

discussed.
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II THEORETICAL DISCUSSION

This chapter provides a brief background of the Simulated

Annealing algorithm. Some basic terminologies are introduced.

The procedures of Simulated Annealing, corsisting of four

steps, are also discussed.

A. Acoustic track detection and Simulated Annealing

Simulated Annealing gets its name from an analogy with the

physical process of annealing. To make a perfect single

crystal, the first step is to melt the pure substance ani then

decrease the temperature very slowly until the desired crystal

is produced. If the temperature is dropped too fast, the

resulting crystal will have many defects. This procedure is

known as annealing.

Simulated Annealing derived from Monte Carlo methods in

statistical mechanics is a stochastic optimization algorithm

that simulates the annealing process. Metropolis et al, first

utilized the algorithm as a simulation method to examine the

properties of substances consisting of interacting individual

molecules [Ref. 1]. The purpose of the simulation is to find

the ground states of a system which corresponds to the

configurations of low energy molecular structure.

Kirkpatrick et al, and Cerny noticed that the search for

low energy configurations in the annealing process could also

3



be linked to the search for low cost solutions in a

combinatorial optimization problem [Ref. 3]. The problems

related to the configurations of elements with a finite or

countably infinite set are called combinatorial problems.

Simulated Annealing shows a strong connection between

statistical mechanics and combinatorial optimization.

According to the report, "Edge Detection by Cost

Minimization" by Hin Leong Tan and Edward J. Delp [Ref. 4], a

correspondence between statistical mechanics and combinatorial

optimization can be drawn as in the following table.

Statistical Mechanics Combinatorial Optimization

States(of system) Solutions(to problem)

Energy(of state) Cost(of solution)

Ground State Optimal Solution

Sonar track data in image form is called a Lofargram; it

shows the frequency spectrum (x-axis) of the received signal

vs. time (y-axis). The problem of sonar track detection can

be treated as an optimization problem, where the optimum among

all possible curve positions is tried out on a Lofargram.

Therefore the Simulated Annealing algorithm can be applied to

detect the acoustic track among all possible state

alternations.

4



A state configuration S is a two-dimensional array of

pixels on an N x N square lattice:

S = { s(i,j) ; 1 : i,j S N

where each pixel can be a binary value 0 or 1. If s(i,j) = 1,

then the pixel s(i,j) is an edge pixel [Ref. 4]. The state

space of the annealing process is the set of all possible

state configurations on an N x N square lattice. In this

case, N is equal to 128. The state configuration in terms of

a track line is a detection of the sonar track on the

Lofargram.

B. Procedures of Simulated Annealing

The SA algorithm consists of the following steps:

(1) Select a random initial state Sp = S. and an initial

temperature Tk, let k = 0.

(2) Randomly generate a next state Sn.

(3) Compare costs of two states Sn and Sp

If C(Sn) < C(Sp) then

transit to state Sn.

else

-mcs')-C(,)]I

transit to state Sn with probability e Tk

(4) Increment k (decrement temperature) and then go to

step (2).

(5) If the temperature drops approximately to zero,

terminate the procedure.

5



C. Discussion

A random initial state and temperature schedule for the

Simulated Annealing must be selected. At the start, the

initial temperature must be high enough so that the

progression of the new states is less dependent on their

actual cost.

Theoretically, a potential next state should be generated

according to a transition matrix of a Markov chain. However,

there is no need to explicitly specify a transition matrix.

Due to the tedious procedure, Hin Leong Tan concluded that

"All that is needed is a method of generating next states such

that certain conditions on irreducibility and reversibility

are satisfied." [Ref. 4]

Given the present state S,, a Markov chain is a random

process where the next state Sml is dependent only on the

immediately past states Sp. A Markov chain is irreducible if

and only if all states can be reached from one another. The

Simulated annealing process also has the property of weak

reversibility; i.e., if state Sa can be transited from state

Sb, then Sb can also be transited from S.

An appropriate cost function is used as a decision

criterion for state transition. The cost function indicates

how good the trial state is for the true position of the track

which is to be detected. Selection of the cost function

depends on the application problem. If only the next state

which yields the lower cost solution is accepted as the next

6



current solution, the accepted current solution will be a

local optimum. The aim however is to find the global optimum.

This can be achieved by allowing an escape decision from the

local optima randomly. Sometimes, it is necessary to climb a

smaller hill to reach a lower valley. It is suggested to

accept a higher cost of the r-st function so that the cost

function ridges can to be climbed over. Conceptually, the

probability of being trapped in a local minima can be reduced.

This decision process is not irregular either. The higher the

hill, the less likely it is for the process to climb over the

cost function hill. The acceptance probability is specified

in step (3) of the previous section.

At each increment of k and decrement of temperature , a

new next state is generated. Whether or not to transit to the

next state depends on the rule in step (3). The above

process is repeated until the cost function remains stable for

a long time. This could be one kind of termination criteria.

At the beginning of the process, the temperature should be

decreased slowly since the state of the system is in an

extremely random status. It is necessary to use small

temperature stepsize to achieve the equilibrium as close as

possible. When the annealing process approaches a steady

state, the decrement of the temperature might then be

increased to speed convergence.

7



Now that a general idea of Simulated Annealing has been

introduced, three main issues needed to be considered for

implementation. They are:

(1) How to generate the next state.

(2) How to define the cost function.

(3) How to control the cooling temperature.

The details of these implementation issues are be discussed in

the next chapter.
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III SINGLE TRACK DETECTION

This chapter describes the implementation of the SA

algorithm discussed in Chapter II for the sonar track

detection problem. For simplicity, a single track images is

considered first. The experience gained from detecting a

single sonar track can then be the basis of the multi-track

detection problem described in the next chapter.

The problem of track detection involves locating the

approximate position of the track and fine tuning.to find the

exact position. Initially, this thesis concentrates on the

fine tuning process using SA. The track is confined to small

region around the possible track. However, it is necessary to

improve the technique beyond local optimization. To do this

solution of the single track detection problem not only

restricted. to a small region but also allowed to a wider

region. Three cases of this experiment are discussed

according to their complexities.

(1) The starting point of the track is known.

(2) The starting point of the known track is within a small

region of the true position.

(3) The starting point of the track is within a large

region of the true position.

9



Case (1) is the simplest to solve. Even though case (1) is a

simplistic case, the experience gained is quite useful to

solve more complicated cases.

A. Case (1) : The starting point of the track is known

1. Algorithm of Simulated Annealing for detection of

track.

a. State configuration

Based on the transition rule mentioned in chapter II about

the procedures, the state configuration will remain unchanged

or transit to the next state configuration. As the Simulated

Annealing process proceeds, the state configuration will move

in the state space. At the end of the process when a stable

state is reached, the state configuration should approach the

location corresponding to the true track in Lofargram.

b. Initial state generation

Although the track position j of the first line is known

in a single track image, the next track position of the second

line could be different. Each scan line of the lofargram

contains one track pixel. The track pixels of the lofargram

are connected to form a state configuration.

For the known track position in the first line, the track

pixel of the second line can only be one of three positions.

Suppose the track pixel is at column j in the first line. The

track pixel in the second line can be only in position j-l,

position j, or position j+l. To select a track p iton L,

10



the second line of the initial configuration, the decision is

based on a random number x,

(0 x 5 1). The track pixel position on the second line vs.

the probability distribution i. shown in the following table.

random number x 0x 1 1 2 x1
3 3 3 3

0 5 x 1

track pixel position

of the 2nd line column j-l column j column j+l

given the current

track line is at j

Different probabilities may be assigned to the table as

desired. The positions of the track pixels for the remaining

lines can be determined in a similar manner. This is how the

initial state configuration is determined.

c. Next state generation

Theoretically, the next state should be chosen randomly

and independently of the previous states. However, the choice

for next state is not equal probable over the entire state

space. States closer to the current one have higher

probability. Therefore, it is easier to form a perturbation

rule for generating the next state rather than a total random

generation.

11



In this thesis, a strategy based on local perturbation for

generation is used. The track pixel sij represents a track at

scan line i, column j. The window Wi,,(S) is the set of 9

pixels contained in a 3 x 3 region centered at pixel s(i,j):

Wj1 j(S) = ( s(m,n) : Im - ii 1 & I n - ji 1 1 1

si, is the center of the window W(Sp). The neighborhood of a

pixel s(i,j) e S is the set of 8 pixels specified by:

Ni.j(S) = s(m,n) : I m - il 1 , In - ji S 1 & (m,n) f (i,j))

[Ref. 4]. Fig. 3.1 shows seven edge structures in W(S p) of

the present state and their corresponding edge structures in

W(S,) of the next state. If the edge structure in W(Sp) belongs

to one of the seven edge structures shown, the next edge

structure in W(Sn) is the structure shown on the right of the

arrow. If none of the seven edge structures can be matched

with W(S P), the state configuration at this step remains.

12



w (Sp) W (Sn)

w (Sp) W (Sn) W (Sp) W (8n)

Figure 3.1 The seven edge structures in W(S ) and their
corresponding W(Sn) using a strategy of local perturbation.
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d. Cost function and transition rule

Cost evaluation is necessary to decide whether the state

S should transit to the state Sn or remain unchanged. If the

edge structure of W(Sp) matches with one of the seven edge

structures shown, both the cost of Sp and the cost of the

corresponding next state Sn are calculated. Then, a

comparison of the costs C(Sn) and C(Sp), and a decision of

whether Sp should change or not are done according to the rule

given in Chapter II.

The cost function used in this thesis is a heuristic

signal detection method involving an implicit threshold. The

cost function involves both the track edge pixel information

from the state configuration and the pixel intensity

information from the image data. Once the temporal window has

matched with a state structure, the corresponding sonar image

pixel values are used to compute the cost. For a single scan

line i the line cost function is defined as

where Ai, average noise, is the mean of the pixel intensity of

the region from the first column to the break of the ith line.

The weight factor a is significant in thresholding, and P is

the pixel intensity of the chosen break point of the ith line.

A block contains three lines from line i-l to line i+l.

Therefore the block cost is

14



Cb= C1-i-i

The choice of the threshold parameter a is important. If the

value chosen is too high, some valid tracks may ne missed.

But if the value is too low, false tracks may be created.

According to the transition rule described in Chapter II,

whether the state remains unchanged or transits to the next

state depends on the factors shown in Fig. 3.2.

if no edge
structure image block1match, remains compute

1 cost n --- n5I

n .. n- n S

edge structure
Initial state configuration match, transit

Next state configuration compute cost of

the next state

1 =-- n---n
1 [ _ n--n S

1 [I

1 based on cost difference, based on cost difference,
1 random no. in range random no. not in range

1
1

Figure 3.2 Illustration of the transition rule.
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Notice that if a heuristic search algorithm is adopted for

the next state transition, no random decision is necessary at

the bottom of Fig. 3.2. In this case it usually does not lead

to an optimum solution.

e. Temperature control

An appropriate and efficient cooling schedule (speed of

temperature reduction) can cause the system to approach the

equilibrium and reach the stable state (global optima)

quickly. A common form used for the cooling schedule is

T(t) - TR
log(t)

However, if this schedule is used, run time can become very

long. A more efficient (in the sense of run time) alternative

form adopted for this thesis is

T(n) = 7nT

where typical value for y is 0.95. TH must be high enough as

explained in chapter II. The cooling schedule Tk plays an

important role in the transition rule as the Simulated

Annealing process goes on. Recall the transition rule:

If C(Sn) < C(Sp) then

transit to state Sn.

else

-cc($.) -C(S,) I

transit to state Sn with probability e

16



As the temperature is reduced, the occurrence of the lower

cost state becomes more and more likely. If the rate of

temperature reduction is too fast, it is unlikely that the

system ends up in the global minimum cost state because of the

lack of equilibrium. Only if the temperature is reduced

slowly enough down to zero, is it possible for the system to

reach the lowest cost state.

2. Experimental results

For case (1), eight sets of experimental data were used.

They are artificially generated. The lofargram SNR values of

these images are 3dB, OdB, -3dB, -6dB, -9dB, -12dB, -15dB, and

-18dB. The image sizes are 128 x 128 for all of the data.

The original test images are shown in Fig. 3.3 and Fig. 3.4.

Notice that for the data with -18dB SNR, the track is barely

visible.

Given that the starting position of the track is located

at 64 Hz, the initial state generated is shown in Fig. 3.5.

This initial state is applied to image data sets of SNR = 3 dB

and SNR = 0 dB, with a = 1.6 and the number of iterations

N = 200. The final results after Simulated Annealing process

are the same in these two cases and are as shown in Fig. 3.5.

The corresponding cost variation with the number of iterations

for both sets of test data are shown in Fig. 3.6.

If a heuristic search algorithm is employed for the same

test images, it is easy to be trapped to a local minimum. Use

17



the same test data with SNR = 3 dB, a = 1.6, and N = 200, the

final result of the heuristic search shown in Fig. 3.7 is

obviously unsatisfactory. Further, the cost reduction cannot

reach a stable state.

If the same value of a( = 1.6) is used for the test data

with SNR = -3 dB, the result does not match the true track

which is shown in Fig. 3.8. The cost cannot reach a stable

state at the end of the simulated annealing process as shown

in Fig. 3.9. By selecting a new value a = 1.8, the result

becomes better as shown in Fig. 3.8. The cost can reach a

stable state quickly in Fig. 3.9. Thus the selection of the

value of a is somewhat data dependent.

The test data with SNR = -6 dB and -9 dB can reach the

track position accurately in the same way as shown in

Fig. 3.5. if a = 4.0 is used. Their costs can also reach

stable states as shown in Fig. 3.10. This indicates that for

lower SNR image data a larger a is desirable.

For the test data with SNR = -12 dB, an interesting result

obtained. For a = 3.5 and N = 200, the final state is close

to the true track position but not perfect as shown in

Fig. 3.11. This suggests that the annealing process should be

repeated several times(say 6 times) at each temperature so

that equilibrium can be assured. In this case, the result is

better slightly as shown in Fig. 3.11, but the cost still can

not reach a stable state in Fig. 3.12. The cost cannot reach

a stable state even if N is increased to 20,000 iterations as

18



shown in Fig. 3.12. There is so far no conclusive explanation

of this result.

For test data sets with SNR = -15 dB and -18 dB, the

necessity of repetitions at each temperature is even more

obvious as shown in Fig. 3.13. Repetition at each temperature

can more nearly assure the system equilibrium condition. These

data sets are run with and without repetition at a given

temperature, but the total number of iterations is the same.

The corresponding cost function values for both approaches are

shown in Fig. 3.14. Notice that for the test data with SNR =

-18 dB, the number of repetitions has to be at least 9 to

yield a better result.
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Initial state

Same final state for
SNR = 3 dB & 0 dB
(a = 1.6,N = 200)

'I

Figure 3.5 Initial state and the result
where the track starts at 64 Hz.
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x10 4  SNR = 3 dB (run lime =3 80260 ms)

MU)0

0
0 20 40 GD 80 100 120 140 160 180 200

Number of lieroions

xlO4 SNR 0 dB (run lime = 382000 ms)

4,

0 .5 - , - - ,,, -

U

0

0.5

0 I I _ I I !I I I

0 20 40 60 80 100 120 140 160 180 200

Number of Iterulions

Figure 3.6 The corresponding cost variation
for test data of SNR = 3 db and 0 dB.
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Final state using
heuristic search

Heuristic research for SNR -3 dS (run time -317900 mgs, alpha 1 1.8)

5000

4800

4600-

4400-

4200-

S4000-

3800-

3600-

3400-

3200-

0 20 40 60 s0 100 120 140 160 180 200

Number of tterao~Ions

Figure 3.7 The result and the cost of the heuristic
search algorithm for test data of SNR = 3 dB
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Final state for
SNR--3 dB

(oc = 1. 6, N = 200)

Final state for
SNR - -3 dB
=1.8, N - 200)

Figure 3.8 Same image data with different Uz value.
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X104  SNR -3 dO (run time = 358260 ms, alpha 1.6)

0U
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X104 SNR -3 dQ (run time 380770 ms, alpha 1.8)
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Figure 3.9 The cost variations for the same
image data with different a value.
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X 104  SNR =-6 dB (run time =381200 ins, alpho 4.0)
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Number of Iterolions

xlO' SNR -9 dO (run time 379420 ins, alpha 4.0)
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Figure 3.10 The cost variations for image data
of SNR = -6 dB and SNR =-9 dB.
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Final state for
SNR = -12 dB

(o = 3.5, N = 200)

Final state for
SNR = -12 dB

repeat 6 times
at each temperature

(ot = 3.5, N = 200)

Figure 3.11 The results for image data of SNR = -12 dB
without and with 6 repetitions per temperature.
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6 d0 SNR =-12 dB (Compore with 6 iterotions/temp, olpho 3.5)

4
*no Iterotion
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Number of Iterotions

XID5 SNR =-12 dB (run time x38173190 mgs, olphoa =3.5)
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Number of Iterotlons lO

Figure 3.12 The cost variations for
image data of SNR -- 12 dB.
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Final state for Final state for
SNR~ = -15 dB SNR = -18 dB
=3.5, N =1200) (a 3.5, N 1800)

Final state for Final state for
SNR =-15 dIB SNR -- 18 dB

6 repetiti -ons/temp. 9 repetitions/temp.
(a 3.5, N = 200) (Cc - 3.5, N 200)

Figure 3.13 The results for image data of
SNR = -15 dB and SNR = -18 dB.
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X1 04  SNR -15 dB (Compare with 6 Iterations/temp, olpho 3.5)10
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Figure 3.14 The cost variations for image data of
SNR = -15 dB and SIIR = -18 dB.
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B. Case (2) : The starting position of the track is within a

small region of the true track

1. Algorithm

a. Forward and reverse scanning

Suppose the exact starting position of the track is

unknown, but the starting position is known to be within a

small region around the true track position. The approach

adopted here is to arbitrarily select a first track position

and generate the initial state as before. Utilizing the same

algorithm in case (1), the result has a fair chance to match

the lower portion of the true track. Because the starting

position is not allowed to move, the position of the result

which is close to the starting position cannot reach the true

track unless the chosen starting position of the initial state

happens to be correct. Since the lower part of the final

state is reliable, the end point of the result may be adopted

as the starting position of a new "initial state". The next

thing to do is to use the same algorithm in case(l), but

change the scan and reverse the order from bottom to top.

b. Unconstrained startinQ position

Another simpler idea is to liberate the starting point.

Let the starting point move along the tendency of the track

pixel in the second scan line. This procedure also has a good

chance to produce the final state configuration close to the

starting position of the track.
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2. Experimental results

To illustrate the results of the above algorithms, a data

set with SNR = 3 dB has been used. The initial state starting

at 75 Hz is arbitrarily chosen in Fig. 3.15. The final result

in Fig. 3.15 shows that a very large portion of the track

matches the true track. This result i, adopted as the new

"initial state" and the same algorithm is used in the reverse

scan order from bottom to top. The result in Fig. 3.15 shows

a good match to the true track. The costs of both procedures,

forward and reverse scanning, are shown in Fig. 3.16. T h e

result of unconstrained first state position using the same

data and initial state is also good. The result and its

corresponding cost are shown in Fig. 3.17.
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First state for
SNR -3 dB

start from 75 Hz
(cO .6 N - 200)

Final state for Final state for
SNR = 3 dB SNR =3 dB

of front scanning of reverse scanning
(oL = 1. 6, N = 200) (OL - 1. 6, N -=200)

Figure 3.15 The result using forward and reverse scanning.
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1,5 x10 4 Start at 75 Hz, SNR * 3 dB, run time =368450 ms, alpha 3.5

)
0
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x10 4  Reverse soon, SNR 3 dB, run time z 387750 ms, alpha 2 3,5
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Figure 3.16 The cost variations of both the

forward and the reverse scanning procedures.
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Final state for
SNR = 3 dB of
liberating the
starting point

XtO'Llberate let pt, SNR -- 3 dB, run time -2300440 rns, alpha -3.0
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Figure 3.17 The result and its corresponding cost
of unconstrained first state position.
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C. Case (3) : The starting position of the track is within a

large region of the true track

1. Algorithm

The initial state chosen in this case is intended to swing

over a wider range of frequency spectrum. If the initial

state intersects with some portion of the true track

somewhere, there is a good chance that the result will follow

the true track in the small overlapping region. The result

covers a small part of the search region. Take the final

state as a new "first state" and repeat the Simulated

Annealing procedure. If the matched region is lengthened, it

assures that the previous result is not a coincidence. The

final state should shrink to a smaller strip of the lofargram.

This procedure is repeated until the final state eventually

reaches the track.

2. Experimental results

The data with SNR = -3 dB is used. The first state

generated which starts from 40 Hz to 80 Hz is shown in

Fig. 3.18. The final state shows a short match in Fig. 3.18.

If the final state is taken as a new "first state" and the

same procedure is repeated, the result in Fig. 3.18 shows that

the matched segment extends. To reach the track faster, six

iterations per temperature setting were used for the fourth

repetition. The results shown in Fig. 3.19 is still good.

The corresponding costs are shown in Figures 3.20 and 3.21.
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Initial state Final state after
1st processing

Final state after Final state after
2nd processing 3rd processing

'I

Figure 3.18 The results of unknown tracking position
after each process.
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Final state after
4th processing

6 repetitions/temp.

Figure 3.19 The final result after 4 processings.
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xin4 1~t - 3039.10 ins, alpha =3.5
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1. x104  2nd process, SNR =-3 dB, run time =324990 ins, alpha =3.5
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Figure 3.20 The cost variations of
the first two processes.
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Figure 3.21 The cost variations of the
third & fourth processes.
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D. Comparison with classical edge detectors

The proceeding two sets of experimental results show that

the Simulated Annealing algorithm can detect a noisy sonar

track with very low SNR value. For comparison, some results

of classical edge detectors are shown to demonstrate the

advantage of the SA algorithm. Fig. 3.22, 3.23, and 3.24 show

the results of the same experimental data sets using Sobel,

Roberts, and Laplacian edge detectors. None of them can

detect the track with SNR below -15 dB. This is because they

are all too sensitive to noise.

E. Concluding remarks

In this chapter the SA algorithm was implemented for the

problem of single track detection. The experimental results

show that the sonar track can be detected down to a very low

SNR where most classical edge detectors do not work at all.

The experience gained here is useful to help solving the

problem of multi-track detection in the next chapter.
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Still =3dB SNR -3 dB

~iui

Still =-9 dB SNR =-15 dB

Figure 3.22 The results using the Sobel edge operator.
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r..

St4R =-9 dB SNR =-15 dB

Figure 3.23 The results using the Roberts edge operator.
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Figure 3.24 The results using the Laplacian edge operator.
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IV MULTITRACK AND SWEEP TRACK DETECTION

This chapter uses the experience gained in the previous

chapter as the basis of solving the multi-track detection

problem. The experimental image data used here includes two

types of multi-tracks images, images containing three-straight

tracks and images containing double-sweep tracks.

A. Algorithm

The algorithm is basically the same as the one used in the

single track detection problem, with some modifications. The

initial state and the next state are generated in the same way

as that of the single track detection, except that now three

track lines need to be generated in the initial state. The

main difference is in the method of transition from the

initial state to the next state. For a single track detection

problem, there is only one track pixel on each scan line.

Therefore, only one decision has to be made for the position

of the track pixel on each line. But for the multi-tzack

detection problem, there is more than one track pixel on each

scan line. Several decisions have to be made for the

positions of all track pixels on each scan line.

For a multi-track detection problem, the state transitions

of all track pixels on each scan line must be determined at

the same time. At scan line i, a state block which includes
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scan line i-i to line i+l has to be stored in a temporary

memory to calculate the block cost of the initial state. Then

the same strategy of local perturbation as in Chapter III is

used to generate the next state. If none of the seven edge

structures can be matched with W(Sp) of any of track pixels

and its neighbors, the state configuration for line i remains.

Otherwise, a transition W(Sp) to its corresponding W(Sn) is

made and the block cost of the next state is calculated. The

track pixels on scan line i will either transit to the next

state together at the same time or all remain at the same

positions, according to the transition rule. The transitions

of the track pixels on each scan line cannot be considered

separately.

To make the track pixels transit altogether may cause some

track pixels to move to higher cost positions. But, more

track pixels can also transit to lower cost positions. The

overall cost should eventually decrease to a steady state

through the annealing process. The run time may be increased

in this way, but the system is closer to equilibrium.

The transition rule for the multi-tracks is shown in

Fig. 4.1.
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Figure 4.1 Illustration of the transition rule

for multi-track detection.
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B. Experimental results

Two sets of experimental data have been used. The first

one is a three-track image with SNR = -12 dB. The three

tracks are constant sinusoids of frequencies 30 Hz, 60 Hz, and

90 Hz. The original image and the initial state are shown in

Fig. 4.2. A straight Simulated Annealing process for 1800

iterations produces a deviated result as shown in Fig. 4.3.

Using nine repetitions per temperature in SA process for 200

iterations, result in the improved result of Fig. 4.3.

The second set of image data consists of the sweep double-

tracks in Fig. 4.4. The sweep tracks which result from the

Doppler effect represent that the target is approaching or

leaving from the sensors. The two tracks start separately at

8 Hz and 74 Hz. The first track at 8 Hz has very weak

intensity. The initial state and the result after the

annealing process are also shown in Fig. 4.4. Notice that the

tracks do not swing over a wide range of frequency due to the

speed limit of ships . The doppler effect is usually not

strong. Thus the sweep tracks data very similar to the three-

tracks data set.

The cost variations for both data sets are shown in Fig. 4.5.

C. Comparison with classical edge detectors.

Again, three classical edge detectors were used to detect

the three-tracks and the sweep-tracks. The results as shown

in Figures 4.6 and 4.7 are very poor. Notice that the pixel
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intensity of each track is weaker than the single track

although the average SNR is the same as the SNR of the single

track.
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Three-track image
SNI=-12 dB

Initial state

Figure 4.2 The original image and the initial state.
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Final state for
N4 1000

Final state for
9 repetiLlons/temp.

N - 200

Figure 4.3 The results for three-track
detection with SNR = -12 dB.
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Two sweep tracks
with SNR 0 dB

Initial state Final state for
9 repetitions/temp.

N= 200

Figure 4.4 The sweep-track detection.
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Figure 4.5 The cost variations for
three-track data & sweep-track data.
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Figure 4.6 Three-track detection
by classical detectors.
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Figure 4.7 Sweep-track detection by
classical edge detectors.
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V CONCLUSIONS

A. Summary

The problem of sonar track detection in noise is difficult

for classical edge detectors. This thesis uses a Simulated

Annealing algorithm to solve the problem by formulating the

sonar track detection problem as an optimization problem.

Simulated Annealing is very effective in finding the global

optimal solution, and the experiments conducted in this thesis

showed fairly good results on data with very low SNR

values(down to SNR = -18 dB). The experimental image data

includes single track data, multi-track (3 tracks) data, and

sweep-track data. The results for these data are fairly good.

Lower values of SNR resulted in more deviation from the true

track position. However, the results are still much better

than those of classical edge detectors.

B. Recommendations

Some unsolved problems arose during thp study, which need

future work. They are:

1. The selection of the thresholding parameter a is currently

a manual procedure. Some trial and error is necessary to

get the best results. An automatic method is needed to

choose an appropriate value of a effectively.

2. The cost variations for test data of very low SNR (below
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-12 dB) cannot reach an asymptotic state even with long

annealing times. However a fairly good result was still

obtained. This is a very odd phenomena and needs more

study to find a reasonable explanation.

3. Multi-track detection data with tracks crossing or

touching each other cannot be handled in the algorithm

implemented in this thesis. Some improvements to the

algorithm need to be accomplished to overcome this

limitation.

4. The use of Simulated Annealing in local track fine tuning

in this thesis applies only to searching the track ir a

small region. A large region searching method using

Simulated Annealing is needed to make the tracking

algorithm more practical.
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